Modulated-Temperature Differential Scanning Calorimetry

Theoretical and Practical Applications in Polymer Characterisation
Sofort lieferbar | Lieferzeit: Sofort lieferbar I

213,99 €*

Alle Preise inkl. MwSt.| Versandkostenfrei
Mike Reading
751 g
249x169x19 mm
6, Hot Topics in Thermal Analysis and Calorimetry

Foreword. 1: Theory and Practice of Modulated Temperature Differential Scanning Calorimetry. Andrew A. Lacey, Duncan M. Price & Mike Reading 1.1 Introduction 1.2 The Basics of Modulated Observations on Heat Capacity 1.3 Practical Modulated Temperature DSC 1.4 Detailed Discussion of the Theory of MTDSC 2. The Application of Modulated Temperature Differential Scanning Calorimetry for the Characterisation of Curing Systems. Bruno van Mele, Hubert Rahier, Guy van Assche & Steven Swier 2.1 Introduction 2.2 Polymer Networks and General Nature of Curing 2.3 Experimental Procedures to Monitor the Cure Process 2.4 Procedures for (MT)DSC Cure Measurements 2.5 MTDSC Characterisation of Cure: Experimental Observations 2.6 Modelling the Diffusion-Controlled Overall Kinetics and Cure Rate Law of Epoxy Systems 2.7 Glass Transition-Conversion Relationship 2.8 TTT and CHT Cure Diagrams 2.9 Conclusions and Future Developments 3. Applications of Modulated Temperature Differential Scanning Calorimetry to Polymer Blends and related Systems. Douglas J. Hourston & Mo Song 3.1 Introduction 3.2 Heat Capacity and its Differential with Temperature Signal over the Glass Transition Region 3.3 measurements of the Glass Transition Temperature and Increment of Heat Capacity 3.4 Multi-Component Polymer Materials 3.5 Conclusions 4. The Application of Modulated Temperature Differential Scanning Calorimetry to Polymer Melting. Bernhard Wunderlich 4.1 Introduction 4.2 The Melting and Crystallisation behaviour of Polymers 4.3 Instrument and Deconvolution Problems 4.4 Applications of MTDSC to Polymer Melting 4.5 Recommendations. References. Subject Index.
MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC.
Michael Reading is a Professor of Pharmaceutical Characterisation Science at the University of East Anglia, Norwich, UK.After post doctoral work in France (CNRS centre for calorimetry and thermodynamics, Marseilles), Mike Reading worked with ICI until 1997, when he left to join the IPTME in Loughborough University. In 2004 he moved to UEA to take up a chair in pharmaceutical characterisation science.
Research: as a senior research scientist with ICI paints, Mike Reading was involved in a wide range of materials science and analysis projects (mainly involving polymers). One outcome from his work was Modulated Temperature Differential Scanning Calorimetry which has now become a common, commercially available technique. With co-workers Azzedine Hammiche and Hubert Pollock of Lancaster University, he invented a scanning probe microscopy based technique known as of micro thermal analysis. This has become a commercially available instrument and has won a number of awards for innovation.

Douglas J. Hourston is a Professor of Polymer Technology at Loughborough University, UK, with a long career in polymer colloids research and expertise in emulsion polymerization, structured latex particles, water-dispersible polyurethanes, and film integration.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.